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Abstract Expressions are given for the Casimir operators of the exceptional group F4 in a 
concise form similar to that used for the classical groups. The chain E4 c F4 c 0 1 3  is used to 
label the generators of F4 in terms of the adjoint and spinor representations of 8 4  and to express 
the 26-dimensional representation of Fd in terms of the defining representation of D13. Casimir 
operators of any degree are obtained and it is shown that a basis mnsists of the operators of 
degsee 2, 6, 8 and 12. 

1. Introduction 

Although a general formula exists for the quadratic Casimu operator for any group this is 
not the case for operators of higher degree. Efficient expressions have been developed over 
the years for all the Casimir operators of the classical groups, but not for the exceptional 
groups. Berdjis [I] gives the desired Casimir operators implicitly. Until recently, explicit 
results were available only for Gz. The degree-6 Casimir of G2 was given in the work 
of Hughes and Van der Jeugt [2] by an expression involving 29 terms and in the work 
by Bincer and Riesselmann [3] by an expression involving 23 terms. These results were 
obtained using computers and leave something to be desired. 

Quite recently I have developed a different approach and obtained for G2 results very 
much alike to those for the classical groups 141. Moreover, it would seem that the same 
approach should work for the other exceptional groups. In the present work I address the 
group F4 and leave E 6 . 7 ~  for a future paper. 

This paper is organized as follows. In the next section, after explaining the use of the 
chain B4 c F4 c D13, I obtain concise expressions for the Casimir operators of F4. These 
require the knowledge of the generators of Dl3 projected into F4. To obtain this projection 
I describe in the next section the 26-dimensional representation of F4 and then obtain in the 
following section the desired projection. In the conclusion I discuss the quadratic Casimir 
operator of F4 and demonstrate that the independent Casimu operators are of degree 2, 6, 
8 and 12 (corresponding to the exponents of F4 being 1.5.7 and 11). 

2. The Casimir operators of 1313 and F4 

My approach makes use of the chain B4 c F4 c 0 1 3 .  The subgroup B4 of F4 is used 
to label the generators of F4. F4 is embedded in 0 1 3  because the smallest-diiensional 
representation of F4 is 26-dimensional and orthogonal and 013 is the orthogonal group in 
26 dimensions. 
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I denote the 36 generators of B4 as B! = -BB, with indices ranging from -4 to +4, 
zero included, B e -a. The Hermitian property is expressed in this basis as B!+ = B j .  
I denote the generators of F4 as B; and S"", corresponding to the decomposition of the 
52 (the adjoint) of F4 into the 36 and 16 of B4, where the 36 is the adjoint, i.e. the B!, and 
the 16 is the spinor Spqrr = ( S m ) t ,  p, 4, r, s = zk. The B4 c F4 relation is exhibited in 
the extended Dynkin diagram 

B. 

ff0 ffi ff2 a3 ff4 

I U1 -U?; u z - u g  U3 - -U4 U 4  -?(U1 + U2 + U3 + u4) 
with 8 4  obtained by omitting f f 4  and F4 obtained by omitting ao. That is to say, the 
ai, 1 < i < 4, are the simple roots of F4. while the a,, 0 < j < 3 are the simple 
roots of B4. The information encoded in the Dynkin digram is made explicit by setting 
a0 = U I  - u2, a, = uz - u3, a2 = u3 - u4, a 3  = u4, a4 = - Z ( U I  + uz + u3 + 114). where 
the ui are orthogonal unit vectors. 

I denote the generators of Dls as 0," = -0;. (D,b)t = 4. zero excluded. The 
commutation relations of Dl3 in this basis are 

1 

[D:, D,"] = S,bD,d - G,dD,b + "go: -go;. 

[D.", (D",f = 6,b(D')t - S:(D": + S$D": - S:(D",s 

(1) 

(2) 

(3) 

It follows from (1) that 

where I define the krh power, k > 1, by 
' - Dk-'):D; = D,'(D k-1 )c b (D )a - ( (Do): = 8; 

(summation convention understood). It now follows that if I define 

ck(D13) = (Dk)z (4) 

then these C, commute with the generators of Di3 and so are Casimir operators of Di3 of 
degree k. Equation (14) provides an elegant expression for the Casimir operators of 0 1 3  

and is an example of the type of expressions valid for all the classical groups. All this is 
well known and goes back to Perelomov and Popov [5 ] .  I remark that the 13 independent 
Casimirs of this type are of degree k = 2s, 1 < s < 13. This is because it follows from the 
antisymmetry property 0.6 = -Dj that the Casimirs fork = odd can be expressed in terms 
of those for k = even, and it follows from the Cayley-Hamilton theorem that Casimirs of 
degree k > 26 can be expressed in terms of those fork < 26. I note further that the Casimir 
operator of degree 26 can be expressed in terms of the square of a Casimir of degree 13 
(which is not of the form given by (4)) and so the integrity basis for the Casimirs contains 
those of degree k = 2 , l  < s < 12, and k = 13, which agrees with the fact that the degrees 
k of the Casimirs in the basis should be equal to the exponents of 0 1 3  plus one. 

We next observe that, under the restriction of D13 to F4. the adjoint representation of 
D13 decomposes thus 

(5) 
where the 325 refers to the adjoint of Dl3 and the 52 to the adjoint of F4. Thus we can 
express the generators D,b of 013 in terms of the generators of F4 and the components of 
the 273-plet. We now obtain the Casimir operators of F4 by observing that they are given 
by (4) in which the 0." are replaced by their projections into F4, i.e. 

325 = 52 + 273 

CdF4) = (fix): (6) 
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where 

(7) 
I mean by (7) that the projected 6; are given by expressing the 0." in terms of the genemtors 
of F4 and members of the 273-plet and then setting the contribution of the 273-plet equal 
to zero. 

E:'"'= DGh73=O. b 

3. The 26-dimensional representation of F4 

To obtain the projected 5 I need to obtain first explicit formulae for the 26-dimensional 
representation of F4. 

The generators 0," of 013 are given in the defining 26dimensional representation as 
the following 26 x 26 matrices: 

0," = lob - I z  (8) 

(1ob)jk &jsbk (9) 

where l o b  is the 26 x 26 matrix with matrix elements 

with the labels j, k taking on the same values as a, b: -13 Q j, k Q 13, zero excluded. 

26 x 26 matrices as follows: 
The Cartan generators of F4 are given in the 26-dimensional representation by the 

(10) 
(11) 
(12) 
(13) 

These are precisely the same expressions as were obtained by Patera [6] and Ekins 
and Cornwell [7] if I relabel their rows and columns thus: their 1 -+ mine - 13, 
their 2 + mine - 12, ..., their 13 + mine - 1, their 14 mine + 1, ..., their 
26 + mine f 13. 

Given these explicit matrices for the Cartan generators hi, the associated generators el 

and fi = e! in the Chevalley basis are found from the equations [7] 

hi = 0: + 066 - D:+ 0; - 0; - D!: 
hz = 0: + 0: - D: - D;+ 0:: - Dif 
113 = f(@- '20: - D:+ 0: - D: + D; - D::+ 0:: - D;;) 

h4 = f( -20,2+ 0: - D:+ 0: - Dg+ 0; - 0; + 0:: - Di:). 

[e j ,  hk] =~Akjej [fi, ex] = 8jkh.k. (14) 
The summation convention does not apply to (14) and A is the Cartan matrix of F4, 

2 - 1 0 0  

A = [  jl ;2 -1 ;* 2 

A solution of (14) for the simple generators et is as follows: 

where 
z 5 ekf3. 
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Except for the renumbering of rows and columns and a different choice of phases, my 
expressions for er and e2 are precisely the same as those given by Patera 161 and Ekins 
and Comwell [7]. However, my expressions for e3 and e4 differ from the corresponding 
expressions of those authors. It would seem that they resolved some of the arbitrariness in 
the solution by demanding that it be real, I require that it display the antisymmetry across 
the antidiagonal corresponding to the fact that we have an orthogonal representation. 

In accordance with my 1abelling.of generators of F4 in the B4 basis in terms of the 
adjoint and the spinor of B4 I have that the above simple generators ei should be labelled 
as follows: 
ar = u2 - 143 -+ er = B: 
a3 = u4 -+ e3 = B4 0 

Next I form commutators of the simple generators and obtain level one generators: 

4 aZ = u3 - u4 -+ e2 = B~ 
(21) a4 = -1 2 (  U 1 +uz+us+u4)  4 e4 = s++++. 

011 +a2 = uz -144 -+ B; = [B:, B;] = 0: + D:- Dfl 

a2 + a3 = 113 -+ B i  = [B:, B!] = 2-'12(Di + 0: + 062 - D: + Dt - of;) 
(22) 

a 3 + a 4 = - ~ ( u l + u 2 + u 3 - u 4 ) - +  s++"=[B,o,s++++].Jz 

= - 2 - y z ' D :  + ZD: + D,i - D; - D;, + Dfi) 
level two generators: 

ai + a2 + a3 = U 2  -+ B: = [B;, B!] = 2-lP(D; + 0: + 0; - D;b - Dfl + &) 
1 f f z  + a3 + f f 4  = -&I + U2 - U 3  + u4) -+ s++-+ 

(231 = [B:, S t s * ] f i  = -2-"2(2*D:5 + ZD; + D! + 083 - D:, - Of:) 

a z + k 3  = u 3 + U 4 - +  B $ = [ B ~ , B ~ ] = D ~ + D ~ + D ~ 2  
level three generators: 

f f ,  +a2 + f f 3  +a4 = -;(UI - uz + u3 + u4) 4 s+-++ = [ BO 2. s++++ IJ i  
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level six generators: 

ai + 2 a z + h 3  42014 =-U] -u4 + Bf = [BT, B i ]  = D$+ Dfl + D& 

( Y I + ~ ~ + ~ C Y ~ + C Y ~ = - + ( U ~  - u z - u ~ - u ~ ) - + S + - - - - -  - [ Bo 4 ,  Sf--+ 145 (27) 

= 21/z(z*D:z + ZD:, + Dj  + D$ - D?l - OF3) 

one level seven generator: 

011 + 2orz + 3013 + %4 = -U] -+ BP = -[S+---, S++'+ 145 
= 21/2(D/3 + Di3 + Di + D:,, - Ofl - D:z) (28) 

one level eight generator: 

011 + h z  + 4% + h 4  = -U1 + U 4  -+ E: = [E!, B:] = -of,, + DE - 
one level nine generator: 

011 + 30rz + &3 + 2 a d  = -UI + u3 -+ B: = [BP, E:] = -ofl + DfZ - 
and one level ten generator: 

(29) 

(30) 

- 
2011 + 3CYz + 4a3 + 2U4 = -111 + U, -+ Bi = [E!,  Bi]  = D;: + D& - 07,. (31) 
Note that the root corresponding to the highest level, equation (31), is precisely the negative 
of 010, where CYO is the extra root added to the Dynkin diagram of F4 to produce the extended 
Dynkin diagram. 

In addition to the above 24 e-type generators, equations (16)-(31), I have 24 f-type 
generators obtained by taking the Hermitian conjugate of the above. Thus corresponding to 
the expressions above for the simple (level zero) lowering generators ej I have 

fi = e [  =E:' = B: = D:+ Dz+ Di0 

fi = ef = B f  = E :  = 2'/'(D; + 0: + D i +  D: + Di0 + D::) 

fi = e: = S++++' = S---- = 21/2(z*D; + zD: + D i  + D: + D; + Dfi) 

and so on for the generators in higher levels. 

are related as follows: 

f, =ez t -  - B, - 4'--3--D - + D: + D;: 
(32) 

Moreover, for the Hermitian Cartan generators I have that the Chevalley and B4 bases 

hl = [ f l , e l ] = [ E 3 2 , E : ] = E 3 3 - E :  

hz = [ fz. e,] = [E:,  B:] = B j  - E: 
h3 = [fi, e31 = [B:, B t ]  = - E t  
h4 = [ f4, ea] = [S----, S*'+] = i ( B i  + E: + E: + B j )  

(33) 

or, solving above for the B," and using (10)-(13). 

-E; = hi + 2hz + 3h3 + 2h4 
= i(D:+ D i +  D,6+ 088 + Di + 0:; + 0:; + Dif+2D;:) 

-E: = hi + hz+h3 = $(D; + D$+ 0: -20:  + D! - 099 - Dit - 0;: - 0:;) 
-E: = hz+h3 = i (D;+ D$ - 2 0 :  - Df - D;+  D ~ + D ; ~ -  Dfi -of;) 
-B:=h3 = ' ( 0 ; - 2 0 :  Z -Oi+ Df - D! +D! - Dit+ Di: - 0;;). 

(34) 
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4. The projected generators D: 

Now since the 26 is the defining representation of 0 1 3 .  the results, above expressing the 
generators of F4 in the 26-dimensional representation in terms of the generators of 0 1 3  in 
the 26-dimensional representation, can be interpreted as giving the generators of F4 in terms 
of those of 0 1 3  in any representation. Then the fi:, the generators of 0 8 3  projected into 
F4, are given by inverting the above equations. 

Thus the 13 Cartan generators of 0 1 3  projected into F4 are given by inverting (34): 

fi; = o  5; = - a ( ~ ;  + B;+ B:+ B,") f i 3  3 - 1  - ?B4 4 

~ ~ , " = - $ ( B ; + B ; + B : - B : )  5 - i B 3  

fi: = - $ ( B l +  B l -  B: + B i )  

fii = -B(B; + B; - B: - B,") 

a:," = -&(Bl - E;+ B i  - B,") 

fi7 7 - - ' 8 2  

fi; = -B(B: - B; + B: + B,") 
(35) 

6:: = -$(B: - B; - B: + B,") 
fi;; = -L(E; - B; - B: - B )  ," f i ; : = - - j B 1 .  1 1  6 
Perhaps an explanation of how (35) is obtained is in order. Equations (34) are four equations 
for four B," in terms of thirteen 0," (no summations). In addition there are nine more 
equations for appropriate components of the 273-plet involving these same thirteen 0,". 
This total of 13 equations can be written as follows: 

ba = UABdB (36) 
where 1 < A, E < 13, where dB = 0; (no summation), bA = B j  (no summation) for 
A = 1,2,3,4, and bA for 5 < A < 13 refers to components of the 273-plet. Inversion of 
(36) is achieved by 

da = (ITibB (37) 
where the inverse of the 13 x 13 matrix U is given by 

(38) 
where the factor f accounts for the difference in the normalization of the da and ba. Finally 
the projected & are obtained by setting in (37) ba = 0 for 5 < A < 13. 

By proceeding in the same fashion I obtain the 156 generators 5: with a z b by 
inverting the 24 e-type equations with the result: 
for the 24 b!3 with 13 z b: 

U-' = 1ut 
3 

_ -  _ -  -E- fiw- f im- fis - f i g  - 0 6  - 0 4  - 0% - 
0 1 3 -  1 3 -  1 3 -  1 3 -  13- 13- l 3 - - 1 3 - O  

ET3 = - I B l  I I f i $ 3 = - l B 1  
_ -  

3 2 D?3=-@3 3 4  
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for the 22 fii2 with 12 =. 161: 

for the 20 fii1 with 11 > Ibl: 

for the 18 fito with 10 > Ibl: 



for the 14 5; with 8 > Ibl: 

for the 10 fit with 6 > (bl: 
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for the six 0; with 4 > [bl: 

for the four 5; with 3 > Ibl: 

and finally for the two hi with 2 > Ib[: 

Lastly, the 156 hi with a < b are obtained from the results above by Hermitian conjugation: 

(51) D - 5 b t  B; = B," sFF = SpqrS' , - (I 

This completes the calcultion of the Casimir operators of F4. 

5. Conclusions 

I conclude with two remarks. 

(i) For k = 2 the result of inserting the explicit formulae for the projected h, (35). (39)- 
(51), into (6) can be simplified into the following formula for the quadratic Casimir operator 

- of Fq: 
& ( F ~ )  = 5ih; = ~ B , B B ;  + $spqrssm (52) 

and I remind the reader that the various subscripts are summed over the following range: 
-13 Q a ,  b Q 13 (zero excluded); -4 < a, p Q 4 (zero included); p ,  q.  r, s = rt. 

The general form of this result for the quadratic Casimir of F4 in the B4 basis was to 
be expected since the two pieces in (52) are the only quadratic invariants of the subgroup 
B4 that can be formed out of the adjoint 36 and the spinor 16 of B4. Thus this result can 
be viewed as a test of the formalism. 
(ii) Recall that, according to (4), the independent Casimirs are of degree k = a, 1 < s Q 13. 
Now consider the Cartan part of the Casimirs. If I denote the Cartan part of C'(F4) by K' 
then it follows from (6) that 

IC, = (R)" (53) 
Since e = -% this is manifestly zkro fork = odd. Fork = even, equation (53) becomes 
(where I have set b, BE, no summation) 

+(%)' + (h -t b2 - b3 + bq)' + (2bz)' + (bl + bz - 4 - b4)' 
- b2 + 4 + b4)' + (bi - b2 + b3 - bq)' + (bl - bz - b3 + b4)' 

+(h - bz - b3 - b4)' + (2b1)'] . (54) 
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Fork = 2, equation (54) gives 
Kz’= z(bi + b: + b: + bz) 

while for k = 4 it gives 
(55) 

Kd = 3-3 (bt + b$ + b: + b:)’. (56) 
This proves that the degree-4 Casimir is not functionally independent of the degree-2 
Casimir. 

IC, = 2-’ x 3”(3[bf + b; + b$ + bi] + 5[bf(bz + b: + bi) + b;(b: + b: + b:) 

For k = 6, equation (54) gives 

+bi(b: + b: + bi) + b:(b: + b: + b:)] 

+30[b:(bibi + bib: + bib:) + b;b:bj]] (57) 
which is functionally independent of the degree-2 Casimii (were it proportional to the cube 
of the degree-2 Casimir it would have the coefficient of the expression in the first, second 
and third square bracket in the ratio 1:3:6 instead of the 3530 above). 

Continuing along these lines I find that the degree 8 is functionally independent of the 
degree 2 and 6, while the degree 10 is dependent: 

(58)  
and lastly the degree 12 is independent of those of lower degree. Since all the Casimirs 
are functions of the four quantities bz, 1 < 01 < 4, I can solve for the b: in terms of the 
independent Casimirs of degree 2, 6, 8 and 12, and consequently all Casimirs of higher 
degree are necessarily dependent. This completes the demonstration that the independent 
Casimirs are those of degree equal to the exponents of F4 plus one. 

KIO - &{281C2(G -ICs) + 3K8] 
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